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Summary. The structure of the algebra generated by one-electron charge and 
spin density operators with an appropriately defined convolution product is 
investigated in the context of the unitary group approach (UGA) to the 
many-electron correlation problem. The new idempotent density operators, 
defined via the unitary group U(n) projection operators, are introduced and 
employed to investigate the behavior of charge and spin density operators under 
the convolution product. 
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1. Introduction 

It is certainly most fitting and appropriate to dedicate this paper to Professor 
Per-Olov L6wdin at the occasion of the forthcoming anniversary of his famous 
1955 Physical Review Papers on Quantum Theory of Many-Particle systems [1]. 
His development and lucid pedagogical exposition of the density matrix formal- 
ism, originating from the pioneering work of Dirac [2] who introduced this 
concept in the framework of the Hartree-Fock approximation, and particularly 
the introduction of various new concepts, such as natural orbitals, correlation 
effects or the projection Operator technique, had a far reaching influence on 
generations of quantum chemists to this very day. 

Although the original hopes [3] to eliminate wave functions from quantum 
mechanics and replace them with reduced density matrices did not materialize, 
since the N-representability problem and the conditions it imposes on the second 
order density matrices of N-fermion systems proved to be too formidable to 
b e -  at least so f a r -  of practical utility in computing molecular electronic 
structure properties [4], the conceptual and interpretative significance of the 
density matrix formalism as developed by L6wdin [1] and McWeeny [5-7] 
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remains as important as ever, not to mention its utility in interpreting various 
experimental results as several books and review articles testify [4, 8-10] (see 
also a brief outline in our preceding communication [11]). 

For this very reason we have addressed [11] the problem of efficient compu- 
tation of molecular charge and spin density matrices using the configuration 
interaction (CI)-type wave function as determined by the unitary group ap- 
proach (UGA) [12, 13]. We recall that UGA originated from Moshinsky's work 
[14] on the nuclear shell model and enabled an efficient spin-adaptation and CI 
matrix element evaluation [15, 16] for spin-independent molecular electronic 
Hamiltonians (for recent reviews see [17-19]). This versatile formalism afforded 
numerous computational implementations, particularly in connection with direct 
CI [20] (see [17-19] for references). We have thus developed [11] a spin-adapted 
approach to reduced density matrices based on the UGA formalism with 
particular emphasis on one- and two-electron charge and spin densities. We wish 
to mention here that the desirability of obtaining spin- and symmetry-adapted 
reduced density matrices, and corresponding natural orbitals and geminals, was 
recognized and addressed soon after the above mentioned seminal papers by 
L6wdin and McWeeny appeared. The initial work by Kutzelnigg [21] was soon 
followed by an exhaustive treatment by McWeeny and Kutzelnigg [22] within the 
standard wave function formalism. Approximately a decade later this problem 
was addressed by Harriman [23] in his series of papers on the geometry of 
density matrices [24]. Although this work again employs a standard first quan- 
tization formalism in constructing spin-tensorial components of one- and two- 
electron density matrices, it may be regarded as a "precursor" of the unitary 
group based formulation even though no representation theory or even Lie 
algebraic formulation was employed (cf., however, the Hermitian basis of Eq. 
(11) of [24a] with the corresponding skew-Hermitian basis, Eq. (2.25) of [25]). 

The UGA based formalism for reduced density matrices [l l] represents, 
therefore, not only a necessary framework for actual computation of one- and 
two-electron density matrices or their various reduced components when UGA 
CI methodology is exploited, but also a very concise and elegant framework for 
spin-adaptation of density matrices in general. In fact this approach naturally 
leads to an interesting charge and spin density algebra when an appropriate 
convolution product is introduced. In this paper we explore the structure of this 
algebra for the one-electron charge and spin density operators and derive basic 
relationships and sum rules. First, however, we shall briefly introduce necessary 
notation and recall basic results obtained in [11]. 

2. One- and two-body density matrices in the unitary group approach formalism 

We consider the UGA formalism based on a set of 2n orthonormal spin-orbitals 
~iu(x) ,  1 ~< i ~<n, # = +½, where x = (r, 4) designates the combined spatial (r) 
and spin (4) coordinates, and assume their factorization into molecular orbital 
0i(r) and spin function )~(~) = 6~ parts: 

~i~(x) = 4,i(r)z~(O. (1) 

Introducing the corresponding second quantization operators X~, and Xi ,  that 
satisfy the well-known anticommutation relations, we can represent the spin- 
orbital Lie group U(2n) generators E~ as: 

~j~E i~' = X*i.Xj~. (2) 
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Taking the partial traces over the spin and orbital subspaces, we obtain the 
spin-averaged operators: 

_1 
2 

E~ = ~'~, 1 E j ~ ,  (3) 
# = - - g  

constituting the generators of the orbital subgroup U(n) of U(2n), and the 
spin-group U(2) generators: 

Ev" = ~ E~. (4) 
i = 1  

Both sets of orbital and spin generators then constitute the generators of the 
spin-orbit subgroup U(n) x U(2) (outer direct product) of U(2n). Thus, the spin 
generators are labeled by the lower case Greek indices while the ]Latin indices 
imply the orbital group generators. Similarly, the orbital indices are integral 
while the spin labels take on half-integral values +_½. To simplify our notation we 
shall indicate the spin labels by the corresponding signs only, so that for example 
we set: 

i 1_ l E.': 1 -= E i+ Ull -=- E + , etc. (5) 

Recalling thus that the number operator PC and the components of the total-spin 
operator S may be expressed in terms of U(2) generators, we can write: 

N=EE~=E+ ÷EZ, 

^ l + S~ = 5(E+ - E2),  (6) 

S + = E  + and S = ~ * + = E + ,  

where S+ = S~ +_ iSy. The spin operators Sx, Sy, Sz or S+, S_, Sz constitute the 
generators of the subgroup SU(2). 

Using this notation we can express the general one-body reduced density 
operator as: 

! 
2 n 

01(X, X t) = ~ ~ * * ip. ~, = -½,,j= = 1 O i"(x)OJ~ (x)Ej~ (7) 

or, alternatively, as a 2 x 2 matrix with entries: 

0 1 ( r ;  r t ) v  ~ 0 l ( (  r ,  U) ;  ( r ' ,  ]1)) ~ * t i/~ = = 49, (r)49j ( r ) E ~ ,  (8)  
i , j=  1 

which we refer to as the one-electron density matrix. We emphaize, however, that 
the entries of this density matrix, Eq. (8), are operators. Thus, the standard 
density matrix o~(r) associated with a given wave function 7 j is given by the 
corresponding 2 x 2 matrix of expectation values: 

~1 (i~)~ = (7"101(r; r)U [ 7'). (83 

Taking the trace of the density matrix of Eq. (8) over the spin space, we obtain 
the familiar [8, 9] charge-density operator: 

A c . A t ~ / i Ox(r,r') =O,(r;r')++ +o,(r;r  ) = ~ 49*(r)49j(r )E]., (9) 
i , j=  1 
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that is obviously spin-independent. The one-electron density matrix of Eq. (8) 
may then be rewritten as: 

01(r;r')f=2eltr,!^Cr'r)6~' ~ + R ' ~ ,  (10) 

where 6 -= (~:,, cry, a~) are the usual Pauli spin matrices: 

.=(o 1o) ' _Ol), 
and 

R(r;r ')= L ~b*(r)~bk(r')F{, (12) 
j ,k= 1 

with F -= (Fx, Fy, Fz) defined by: 

(rxg = I(E{+_ + E ~ ) ,  

(Fy){ = -½i(E{ + _ - E{+ ), (13) 

( r z ) {  - ! ~ , J +  _ E ~ ) .  -- 2 \L,k+ 

Equivalently, we can write the one-body density matrix of Eq. (8) in a conve- 
nient tensor form: transforming with appropriate SU(2) coupling (or Clebsch- 
Gordan) coefficients, we obtain a scalar component: 

Q l ( r ; r , ) ( o O ) = Q l ( r ; r , ) ~  i 1 __1)1+~ ^ ^ < ~ ( - v ) l O O > (  

= xf20~(r; r'), (14a) 

given by the charge density operator, and a vector density with components: 

01(r ;  r ' )  (1) ~ ~ l ( r ;  r ' )~  = ~ l ( r ;  r t )v  p 1 1 ^ ^ (~/~( - v) ] 1~)( - 1)I+~ 

( - 1 < ~ < 1 ) ,  (14b) 

where in each case the summation over/~ and v is implied. Explicitly we easily 
find that 

01 (r ;  r ' ) l  --= 01 (r ;  r ' )  _+, 

O1 (r; r ')o = - -  x / / 2 R z  (r;  r ') ,  ( 1 4 b ' )  

01(r ;  r ' ) _  1 =- - - 0 1 ( r ;  r ' ) + .  

For t h e  case of spin-dependent Hamiltonians, such as those arising when 
considering spin-orbit coupling or general relativistic effects, the spin-orbital 
U(n) x U(2) basis still represents a useful starting basis set as long as the 
spin-dependent interaction terms are relatively small. We must then represent the 
relevant operators in terms of U(2n) generators Ej~ and consider their matrix 
elements in the U(n)x U(2) basis [26]. Clearly, U(2n) generators will mix 
different U(n) irreps. It may be shown [26] that the U(2n) generators Ej~ may be 
resolved into spin-shift components: 

E)i~ = E( - ) ~  + E(0)~ + E( +)j~, (15) 
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where E ( + )  [ E ( - ) ]  increases [decreases] the total spin of the spin-orbital states 
by one unit, while E(0) leaves total spin unchanged, so that in fact: 

Ej = ~ E(0)~.~, (16a) 
,u 

while 

E( + )i~ -- ~ E( - ) ~  = 0. (16b) 
# # 

This resolution of U(2n) generators leads naturally to the corresponding parti- 
tioning of the density matrix of  Eq. (8), namely: 

ol(r; r')~ ---- ~ - ) ( r ;  r')~ + ~°)(r, r')~ + ~(l+)(r; r )v, (17) 

where 

O~')(r; r')~ ~ * ' ¢' (17') = 4~i (¢)~j(r)E(~)j~,  ~ = 0, +__. 
i , j =  1 

In view of Eqs. (15) and (16) we have that: 

tr[0 ~°~(r; r')] = tr[~l (r; r')] = ~ (r; r'), (18a) 

and 

tr[~]+)(r; r')] = 0. (18b) 

Relying on the decomposition (10) we can thus write: 

----- 1 c i  r .  r )t~ v -[-- " ~ , u ,  O~°)(r;r')~ ~Q~( , ' ~ R (°) ~ (19a) 
v 

~-+)(r;  r ' )~ = R(-+) • 6t~, ( 1 9 b )  

where R (~ is given by Eq. (13) with E jr" replaced by E(e)~. 
The zero-shift component, Eq. (19a), is of a particular significance since it 

determines the full density matrix for wave functions with well-defined total spin 
S. It was shown [26] that the zero-shift components E(0)~ of the U(2n) 
generators E~ may be expressed in terms of U(n) and U(2) generators and of a 
special second degree polynomial A in terms of U(n) generators defined as 
follows: 

1 ^ 
= E ( E  + ~ N  - n - 2 ) ,  (20) 

where E --- [E~] designates the n x n matrix whose entries are U(n) generators E~. 
The powers of E are defined in the usual fashion [27, 28]: 

(Em+ W,j _-- "~ ~"~ ;  ~ , j  = (W") ~E~ , (e°)~ = 6~, (21) 

where again summation over repeated indices is implied. With the help of  this 
second degree polynomial, Eq. (20), we can thus express the zero-shift compo- 
nent E(0)~ as follows: 

- 1 A / Y #  ( S  ~ 0) (22) E(0)~ -- 1rT~,~2,_,s~ - [2S(S + 1)] - s - ~ ,  

w h e r e / ~  designates the SU(2) generator: 
1 ^ ,u g~ = E~ - 5N6~. (23) 

When S = 0, the second term on the right hand side of (22) does not contribute 
in agreement with the fact that A~ = 0  ( l<~i , j<~n)  when S = 0  (see, for 
example, the Appendix of Ref. 26). Using this result for "~ E(0)j~ we easily find the 
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zero-shift component of  the vector R, Eq. (12), and thus we can express the 
zero-shift component, Eq. (19a), of the density matrix of Eq. (8 ) a s  follows: 

1 ~ c r  r .  / # O~°)(r; r')~ = ~0~(. , r  )5~ + ~ ( r ;  r ' ) S .  o~ ~ 
1 ~ c r  r .  t # t ~ #  =~o1( , r ) 3 ~  + ~ ( r ; r ) E v ,  (24)  

since 

s .  = = - ( 2 5 )  

Here ~ designates the charge density operator of  Eq. (9), while ~ represents the 
normalized spin-density operator: 

~ ( r ;  r') = - [ 2 S ( S  + 1)]-I ~ q~*(v)qSj(v')A~; (S # 0). (26) 
i , j =  1 

Again, this operator vanishes when S = 0. 
In the case of  spin-dependent problems we also need non-zero components 

~-+), referred to as total spin transition density matrices [11]: 

O~+-)(r; r')~ = R(+_) . our = ~ c~* (r)dpj(r')E( + )j~. (27) 
i , j  = 1 

To construct these shift components we employed [11] Green's polynomial 
identity for E = [Eu] (see Appendix of Ref. [11] and Ref. [27]): 

3 

l q  ( e  - = o, (28)  
i = 1  

where the roots ei on a U(n) irreducible representation (irrep) with the highest 
weight (2alb0 C} = [ab c], a + b + c = n take the values: 

el = 1 + c, e2 = n + 2 -  a, es = 0. (29)  

With the help of  this identity we can construct orthogonal projection operators 
[28] (recall classical Lagrange interpolation polynomials): 

P[r] = I-I E -- ek, (30) 
k(V=r) 3r  - -  3 k  

P[r] i P[l]~ = 6rtP[l]j, (31) 

(the summation convention is implied) providing resolution of  the identity: 
3 

Z P[r]j = 6jl. (32) 
r = l  

It was shown in Refs. [28] and [29] that with the help of  these projectors, the 
spin-shift components of  U(2n) generators are given by the following expres- 
sions: 

E(+) j~  = i k~ t P[ 1]kEz~ P[2]j, (33a) 

E ( - ) ) ~  = i ku , P[2]kEt~ P[ 1]j. (33b) 

Alternatively, we may also exploit the U(2) Green's characteristic identity and 
obtain [26]: 

E( + )~ = P[ F, iz 1], Ej.~P[2] ~, (33'a) 
E(--)j~ , iz G = P[2 ] ,  E).P[ 1]v, (33 'b)  
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where now: 

and 

P[r]~ , (1 ~ r # f ~< 2) (30') 
~ r  - -  ~ 

1 ~I = n  + I - e  =½N + S + I, ~2=a = ~ N -  S. (29') 

Let us finally mention that we can handle two-electron density matrices in a 
completely analogous way [11], although it is very convenient in this case to 
exploit a special basis for the universal enveloping algebra of U(2n) constituted 
by the so-called replacement operators [30]. Following McWeeny and Mizuno 
[6] we can then express the two-body density matrix 02: 

02(1, 2; 1,_'2q ~=,~e Z, ~b*( 1)qSk (2)qSj(1)q~,(2 )[E~.vEte - -  ujS~k£olYi#],tl v L ' l  0 ] 

i , j , k , l  = 1 

= 01(1; l ' )~&(2; 2')~ - 6~01(1; 2')6(2; 1'), (34) 

where we now write 1, 2, 1', 2' for rl, r2 , /1 , /2 ,  in convenient SU(2) tensor form. 
This will consist of the number density: 

02(1, 2; 1', 2 )  = 0~(1; 1')0~(2; 2') - 0{(1; 2')6(2; 1'), (35) 

two vector densities: 

II1(1;2; 1', 2')~ = 02(1, 2; 1', 2 ' )~(1/~½(-v)  I l e ) ( -  1) ½+v, (36a) 

, / * , ' ) , '~a ,u/1  1(_v)11~)(_1)½+~ ' V2(1, 2; 1 ,2 )~  = 02(1, 2; 1, - ,~v ..5lz~, 

( - 1 ~ < ~ < 1 ) ,  (36b) 

and three tensor densities: 

Q(1, Z; l ' ,Z ' ) (m/)=02(1,2; l ' ,2 ' )~e( l~lf l l lm) ,  (/ = 0,1, 2; - l  <~ m <~ l) (37) 

where: 
• , , = ^ ' 9 " ~ I * a / 1  I ( _ _ v ) [ l c ~  1 1 02 (1 ,2 ;1 ,2 )=  e 0 = ( 1 , 2 ; 1 , - , ~  . ~ ,  ><~a~(-v) l lB>(-1)  '+~+" 

( -1~<~, /~  ~< 1). (38) 
T his^gi~s  rise to two scalar densities 0~ and  0~ °), three vector densities 
V1, V2, QO) and one rank two tensor density Q(2) altogether comprising 16 
components. Clearly 16 = 2 4 is the number of  entries in the density matrix 02, 
Eq. (34). 

For the spin-independent case, the explicit expressions for all these density 
operators were given in [ 11]. With the help of these expressions one can evaluate 
the actual density matrices once the wave function in UGA form has been 
determined. 

We shall now turn our attention to an interesting algebraic structure of 
charge and spin density operators that arises when we introduce a convenient 
convolution product. We shall also show that the projection operators defined by 
Eq. (30) give rise to new idempotent density operators. 

3. Single electron charge and spin density algebra 

We have seen that, for spin-independent systems, the single electron density 
matrix is given by the zero shift component, Eq. (24), which is determined solely 
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by the charge density operator, Eq. (9), and the normalized spin density 
operator, Eq. (26). These operators in fact generate an algebra, which is closed 
under multiplication by scalars and addition, together with the convolution 
product " ," ,  defined by: 

[0 * z^](r; r') = ( 0 ( r ;  r")~(r"; r') dr". (39) 

Before investigating the general structure of this algebra, let us consider the 
behavior of the one-body density operator of Eq. (7) under the spin-orbital 
convolution product, that we designate by "~,", i.e. 

[01 01](x; x') t . . . . . . . .  -~- E l (X ,  X )Ol (X , X ' )  dx t '  
d 

= ) v(X )Ok (x ).4 
i,j,k,l= 1 #,v,o,a = _ l  

1 
~ , , ' 2 i p  = $,~(x)¢z~(x )(E )z~, (40) 

i,l= 1 p,a = 1 

where in the last step we used the orthonormality of spin orbitals $;,(x). 
However, on the totally antisymmetric irrep of U(2n) with the highest weight 
(]NO) =-(1No2n--N), which is pertinent to the N-electron problem, the U(2n) 
matrix E = [E~I~] satisfies the quadratic identity ~ [11, 16, 27]: 

E(E  - 2n - 1 + N) = 0. (41) 

We can thus reduce the required entry of E 2 to that of E, namely: 

(E2Y. " = (2n + 1 -- N)E~. (42) - -  •yv 

Using this identity in Eq. (40), we get that: 

[01 ~ 01](X; X ' )  = (2n + 1 - N)01  (x  , x ' ) ,  ( 4 3 )  

which we can also write in the following matrix form: 
1 

f r )~o~ t r  , ' ~ " Z½3~l ( r ;  " ~  . . . . .  r ) ~ d r  = ( 2 n + l - N ) ~ l ( r ; r ' ) ~ .  (43') 
a = - -  

This immediately implies that we can define the normalized density operator: 

ffl(X; x') - ( 2 n  + 1 - N )  1~1(x; x') (44) 

that is idempotent: 

[ffl "~ ~ l ] (X;  X t )  = t"  . . . . . . . .  ~l (X ,  X )~ I (X , X ' )  dx" = 7 , ( x ;  x ' ) .  (45) 

It must be emphasized (see also [11]) that the idempotency of the density 
operator ~ ,  Eq. (44), must not be confused with the well-known [1, 6] idempo- 
tency of the molecular density matrix associated with a closed-shell Hartree- 
Fock wave function. Indeed, Eq. (43) is an operator equation and is a direct 
consequence of Green's identity (41). 

1 It may be shown [11] that this identity is a simple consequence Of a trivial identity between 
replacement operators, namely E (~)(k~) + ~(k~)(~u) _ n (jv)(lz) ~(3hO(lv) -- v 
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Let us now proceed with the investigation of the structure of the algebra of 
one-body density matrices that were introduced in the preceding section with the 
binary operation defined by the orbital convolution product of Eq. (39). We 
shall treat the cases S = 0 and S ~ 0 separately and begin with the case S ¢ 0. 

We shall find it convenient to introduce new density operators: 

e~(v, r ) = ~ q~*(r)q~j(v')P[cq~, (e = 1, 2, 3) (46) 
i,j= 1 

where Pie] are the U(n) projection operators, Eq. (30). The convolution product 
of these operators equals 

[~= * e~](r; r') = [ '~(r;  r")~(r"; r') dr" 
d 

(47) 

= (r)4~k(r ) & 4~,(r )Pt~]jP[B1,. 
i , j , k , l  = 1 

Using the orbital orthonormality: 

f g (  " ,  . . . .  
r )~ = k(r ) dr ajk, (48) 

the right-hand side above reduces to: 

i 49*(r)d),(r')(P[~]~lP[~]~)=6~ ~ 49*(r)~,(r')P[~]~, (49) 
i , l  = 1 i , l  = 1 

where we have employed Eq. (31). We thus find: 

[~ • ~](r; r') = a~e~(r; r'), (50) 

which shows that the density operators ~ ,  Eq. (46), form an orthogonal set of 
idempotent density operators. Moreover, in view of the identity resolution, Eq. 
(32), we have that: 

3 

y~ e~(r; r') = &r; r'), (51) 
c ~ = l  

where 

g(r; r') -- ~ ¢,*(r)~,(r') (52) 
i = l  

determines the identity operator on the one electron Hilbert space. The above 
special properties of the idempotent density operators ~ ,  Eq. (46), make them 
particularly convenient to work with. 

We may express the charge and normalized spin density operators, Eqs. (9) 
and (26): 

*c . (r')Ej,' (9') 
i , j =  I 

and 

--1 ~ ¢i*(r)~j(r')A~, (S ¢O) (26) 0~(r; r') 2S(S + 1),j=, 
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respectively, in terms of the density operators ~ ,  Eq. (46), by noting that the 
U(n) matrices E and A may be expanded as follows: 

E = elP[1] + e2P[2], 

A=el e l + ~ - - n - 2  P[1]+e2 e z + ~ - n - - 2  P[2], 

where we used the Green's identity of Eq. (28) together with the identity 
resolution, Eq. (32), as well as the fact that ~3 = 0. We thereby obtain that: 

~ ( r ;  r ' )  = ~i~l( r ;  r ' )  + ~2e2(r; r ' ) ,  
(53) 

~( r ;  r') 81 ~l(r; r '  ) e2 ^ r 
= 2S 2(S + 1) e2( ; v'), 

where we employed the relations: 

N N 
e l + ~ - - n  - 2 =  - ( S  + 1), ~ 2 + ~ - - n  - 2  = S. (29') 

Inverting Eqs. (53) we may also write: 

S 
~,(r; r') - - -  [O{(r; r') +2(S + 1)~](r; r')], 

(2S + 1)~1 (54) 
S + I  

e2 (r; r') - [~ (r; r') - 2S~ (r; r')]. 
(2S + 1)~ 2 

Equations (53) and (54) enable us to move between the physically important 
operators ~ ,  ~ and the mathematically more convenient operators ~ ,  Eq. (46). 

In view of Eqs. (53) and (54) and the idempotency of the operators ~ ,  Eqs. 
(46) and (50), we deduce the following properties of the operators ~ and ~ 
under convolution, namely: 

O~*~=(n+2-N)~-2S(S+ 1)04, 

0 ~ , ~ = 0 ~ , 0 ~ =  n + l -  04 - ~ ,  (55) 

0~1 * 04 (n + 1 - N/Z)  (0~ + 204) 1 ̂ , 4S(S + 1) 

Thus, unlike the full (normalized) single electron density operator, Eq. (44), the 
charge and spin density operators are not generally idempotent, although they 
close to form a two dimensional algebra under convolution product. However, 
the density operators ~ ,  Eq. (46), are idempotent and orthogonal [and repre- 
sent, moreover, the unique density operators of this type yielding the spectral 
decomposition, Eq. (51)] and, in this sense, afford natural spin-independent 
generalization of the full (normalized) density operator, Eq. (44). It would thus 
be worthwhile to investigate the possible physical significance of these operators, 
particularly for the idempotent density operator ~3(r; r'), which is orthogonal to 
both the charge and spin density operators. 

It remains to consider the S = 0 case, when (cf. Appendix of Ref. [ll]): 

A = P[ 1] -- O, (S -- O) 
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and the remaining projection matrices reduce to: 

N 
P[2] = E/82, P[3] = 1 - P[2], ~2 = n + 2 - -~, (s = o ) .  

Thus 

0~(r;  r')  = 81(r; r')  = 0, ( S  = 0) 

and the charge density reduces to: 

Q l ( r , r )  = n + 2 -  82(r; r'), (S = 0), 

which is a scalar multiple of a projection density, ~2. As in the case S # 0, the 
density operator ~3(r; r ') is orthogonal to 0~(r; r'). 

It is worth noting that in the special case when N = 2S (i.e. ,when a = 0, 
b = N, corresponding to completely unpaired spins) the U(n) matrix E satisfies 
the reduced identity (cf. Appendix of Ref. [11]): 

t ' [ 2 1  = 0, 

so that 

In this case we have: 

~2(r; r')  = 0. 

0~(r; i,') = N0~ (r; r ') = (n -4- 1 - N)~l(r; r'), 

where we have used, for the case at hand [cf. Eq. (53)], that 
Zl = n + 1 -  2S = n + 1 -  N. Thus, for this particular case, both the spin and 
charge density operators are proportional to the same idempotent density 
~l(r; r'), as we would expect. For the general case, however, corresponding to 
a # 0, b # 0, both the charge and spin density operators are independent. 

We are now in a position to consider the behavior, under the convolution 
product, of the spin-shift densities ~-+), Eqs. (19b) and (27), which, unlike the 
charge and normalized spin densities discussed above, depend explicitly on the 
spin coordinates. For such density operators we defined the convolution product 
• ~ as follows [cf., Eq. (40)]: 

[0 ~; "~](x; x') = .fO(x; x")¢(x'; x') dx', 

where x, as usual, denotes the combined spatial and spin coordinates. 
By equating the spin-shift components of Eq. (43) we immediately obtain the 

equations: 

0~ +) ~ 0~ +) = 0 ~ - )  ~ 0(1 ) = 0, 

~o) ,~ 0(1+) + 0(+) ~, 0(lo) = (2n + 1 - N)0~ +), (56) 

0~+~ ~ 0~ ) + 0 ~ - )  ~ 0~+) + 0(lo) ~ 0~o) = (2n  + 1 - N)O~ °). 

This last equation is a direct consequence of Eq. (42), whose zero-shift compo- 
nent gives: 

[E( +)E(  --)]}~ + [E( --)E( +)]j~ + [E(0)z]j~ = (2n + 1 -- N)E(O)ifi, (57) 
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where (assuming summat ion over repeated indices): 

[ E ( E ) E ( d ) l j ~  = i~ , k~ .  E ( e ) k ~ E ( E  )iv , ~, E" = O, +_. 

Now, from Eq. (24) we have (note  that  S - S .  "[): 

i k/~ _ i #  E1 - -  /a i 
P [  l l k E ( O ) j ~  - -  E ( O ) k ~ e [  1]~ = ~-~ (E + S)~ P[ 1]j, 

(58) 

- - - 1)~P[2lj, P[2lkE(0)/~ = 2(S + 1) 

f rom which we immediately obtain, in view of  Eq. (33): 

E1 (F-~ -'}- S)~E( + ) i v .  [E(0)E( +)1~ = ~-~ ~ ;~ 

However,  f rom the SU(2) identity [26]: 

(/~ + S)(/~ - S - 1) = O, (59) 

and Ref. [26], we know that: 

( ~  + s )~  
e[1]~ u 

2 S + 1  ' 

E( +)/;~ = ~ ~* P[ 1],,E( +) j r  

so that  

(~ + s)~ ,~ 
2ff-~- i E ( + )j~. 

Substituting into the above we arrive at: 

2 S +  1 
[E(0)E( +)]}~ - 2S 

and, in a similar way, we obtain: 

2 S +  1 
[E(0)E( --)]j;~ = 2S + 2 

We thus deduce the convolut ion laws: 

and similarly: 

- - E 1 E ( + ) j ~ ,  

g2E( - -  ) ji~ v . 

0to) ~, 0~+) _ 2S__+  1 El 0~+), 
2S 

0t0)~0~_ ) 2 S + 1  ^(_) 
- 2 ~ 7 ~  E20, , 

2 S +  1 
0~+) ~ 07) = 0~+% 2 s  + 2'  

0~ ) ~ 0 7  ) = 0~-% - -  
2 S +  1 

2S 

(60) 

(61) 

We note that  0 (-+) do not  commute  with the total spin S so that  the ordering on 
the r ight-hand side o f  Eqs. (60) and (61) is important .  Recalling that  0 (-+) shift 
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the total spin by one unit and employing the values of the roots ei, F,q. (29'), we 
can also write Eqs. (61) in the form: 

O~ +) ,~ O~ °) = n + 1 - ~-  + O~ +) = (e2 - 1) ~ ~+),  
(61') 

( N ) 2 S + 3 ^ ( _ )  , 2 S + 3 ^ ( _ )  
 -5-s 2 75 1 =t l-1)2 TSql , 

and verify that these convolution laws, Eqs. (60) and (61), or (61'), satisfy the 
second Eq. (56). 

If we next multiply Eq. (57) on the left by the U(n) projector P[ 1], we obtain, 
in view of Eqs. (58), (59), and (33), the result: 

[E( +)E(-)]}v ~ = P[ 1]~[(2n + 1 --N)E(O) --E(0)2]k~ 
= ~+ P[ 11} (/~ + S)~, 

where 

c~+ = ~ 5  [2S(2n + 1 - N) - ~1(2S + 1)1. 

In matrix notation, this yields the convolution law: 
+) - 

= a+el(E+ S)~, 

with ~+ as in Eq. 
convolution law: 

where 

(62) 

(63a) 

(62) and el given by Eq. (46). We similarly deduce the 

(63b) (0 1) = - s - 

~2 .,2 [(2S + l)e2 - 2(S + 1)(2n + 1 - N)]. 
4(S + 1) 

Finally, for the zero shift components, we arrive at: 

=ao~Ql.01+Evol.~+[ff.+S(S + .^~ 1)]v 0l * ~ ,  (64) 

which may be evaluated with the help of Eqs. (55). Expressing the right-hand- 
side in terms of idempotent density operators ~ ,  Eq. (46), we get: 

(O'°7~O'°))~=(2S+l)Fde1~2 ~ L \ 2 S J  (E+S)vU^ ( e  1 -  2-~q-e2 1 ) ) ( / ~ - S - 1 ) ~ 2 ] ' ( 6 4 ' ) 2  

Again, we can easily verify that these convolution laws satisfy the sum rule given 
by the third Eq. (56). 

The above results, particularly Eqs. (56) and (60)-(64), summarize the 
behavior of the spin-density matrices 0~ ~), Eq. (19), under convolution product. 
As noted previously, we obtain an interesting algebra, in which the idempotent 
densities ~ ,  Eq. (46), play a central role. A further investigation of the properties 
of these operators, and particularly of their physical significance, would be highly 
desirable. 
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